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Shape models

» Geographic grid
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Shape models

> Geographic grid
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> Polyhedral model

» Spherical harmonic expansion
* set of orthogonal functions
on a sphere



Gravity models

* Spherical harmonics
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Gravity models

* Spherical harmonics
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* Ellipsoidal harmonics
* Mascons




Gravity and topography in spherical harmonics

e Shape radius vector
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Hydrostatic equilibrium

» In hydrostatic equilibrium
* Surfaces of constant density, pressure and
potential coincide
* No shear stresses



Hydrostatic equilibrium

» In hydrostatic equilibrium
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» In hydrostatic equilibrium

p=p(r),w
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Hydrostatic equilibrium

» In hydrostatic equilibrium
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Hydrostatic equilibrium

» In hydrostatic equilibrium
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Hydrostatic equilibrium

» In hydrostatic equilibrium
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Watts, 2001

Isostasy

Airy-Heiskanen
Sea Coast Ocean

"Anti-root"

Depth of
Compensation

Isostatic equilibrium:

* Equal weight of
crustal columns at
the depth of
compensation

* Deviatoric stresses
within the
isostatically
compensated layer
are minimized
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* Free-air anomaly

o'model =

Gravity anomalies
Opp = Ogps — 0

gravity of
hydrostatic figure

model
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* Free-air anomaly

o'model =

 Bouguer anomaly

amodel =

Gravity anomalies
Opp = Ogps — 0

gravity of
hydrostatic figure
Ogp = Ogps — 0

gravity of shape
assuming p

model

model
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Gravity anomalies

* Free-air anomaly Oca = Oops — Ornodel
_ gravity of
Omodel = e
hydrostatic figure
* Bouguer anomaly Oga = Ogps — Ormodel
gravity of shape
Omodel = assuming p
* Isostatic anomaly O\pn = Oops — Omodel - depth of
..... compensation
gravity assuming
o

model ~ isostasy for P1, P>, h
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Why Ceres?

Largest body in the asteroid Ceres location in the asteroid belt
belt

Low density implies high
volatile content
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Conditions for subsurface
ocean
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Much easier to reach than

. 3
other ocean worlds Semimajor axis [AU]
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What did we know before Dawn

Castillo-Rogez and McCord 2010

Ceres accreted as a mixture of ice and rock just a few My after the
condensation of Calcium Aluminum-rich Inclusions (CAls), and
later differentiated into a water mantle and a mostly anhydrous
silicate core.
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What did we know before Dawn

Castillo-Rogez and McCord 2010

Ceres accreted as a mixture of ice and rock just a few My after the
condensation of Calcium Aluminum-rich Inclusions (CAls), and
later differentiated into a water mantle and a mostly anhydrous
silicate core.

Zolotov 2009

Ceres formed relatively late from planetesimals consisting of
hydrated silicates.

Bland 2013

If Ceres does contain a water ice layer, its warm diurnally-
averaged surface temperature ensures extensive viscous
relaxation of even small impact craters especially near equator
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Evidence for viscous relaxation

* More general approach:
study topography power
spectrum
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Ermakov et al., in prep for JGR
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Evidence for viscous relaxation

* More general approach:

study topography power £
spectrum o
* Power spectra for Vesta g 107
closely fits with the Z
power law to the lowest £ 107
degrees (A < 750 km) E
5

107

3000 1000 300 100
Wavelength [km]

Ermakov et al., in prep for JGR
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Evidence for viscous relaxation

* More general approach:
study topography power
spectrum

 Power spectra for Vesta
closely fits with the
power law to the lowest
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* Ceres power spectrum
deviates from the power 3000 1000 300 100
law at A > 270 km oo

Ermakov et al., in prep for JGR
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Speciral-spatial localization of topography

* Use Slepian windows to minimize spectral and spatial leakage
* Icosahedron tessellation for uniform distribution of windows
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Ermakov et al., in prep for JGR




Latitude dependence of relaxation

more relaxed
equatorial
topography
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Ermakov et al., in prep for JGR
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Finite element model

 Assume a density and
rheology structure
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Fu et al., 2014; Fu et al., 2017 in prep for EPSL
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Finite element model

 Assume a density and
rheology structure

* Solve Stokes equation
for an incompressible
flow using deal.ii library

DAL
“““““\\‘\“‘ 5
Y |“““

Fu et al., 2014; Fu et al., 2017 in prep for EPSL
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Finite element model

 Assume a density and
rheology structure

* Solve Stokes equation
for an incompressible
flow using deal.ii library

DAL
“““““\\‘\“‘ 5
Y |“““

e Compute the evolution of
the outer surface power
spectrum

Fu et al., 2014; Fu et al., 2017 in prep for EPSL
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Example of a FE modeling run

——Q0bserved
——Power law fit
——FE result
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plastic failure location
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Finite element modeling results

* Ceres crust is ~ 1000 times stronger than
water ice

* Must be dominated by rock-like materials.
water ice in the Ceres’ crust (<30 vol%)

* The rest is a combination of serpentine
phyllosilicates, clathrates and/or salt

10 ( 200 300 400 3O




Two-layer model

 Simplest model to
interpret the gravity- 4000
topography data 3800
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green contours = C/Ma?
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Using Tricarico 2014 for computing
hydrostatic equilibrium
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Two-layer model

 Simplest model to

interpret the gravity- 4000
topography data 3800
3600

E 3400 £

 Only 5 parameters: 2 =

. z,3200 >

two densities, two 2 3000 2

radii and rotation © 2800 5

3

rate 8 2600
2400

green contours = C/Ma?

2200 o
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Using Tricarico 2014 for computing
hydrostatic equilibrium
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Two-layer model

 Simplest model to

interpret the gravity- 4000 \
3800 _J2 constraint
topography data o R
E 2400 | E
 Only 5 parameters: 2 =
.. 2*3200 >
two densities, two 2 3000 2
radii and rotation S 2800 5
o b=
rate O 2600 ©)
2400
— green contours = C/Ma?
* Yields ¢/Ma? = 0.373 00 2%
Core size [km]
C/M(R,,)* = 0.392

Using Tricarico 2014 for computing
hydrostatic equilibrium
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Isostatic model

Z_ - gravity-topography admittance
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Isostatic model

Zn - graVity'tOPOgraphy admittance “

1600 kg/m®
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» Linear two-layer hydrostatic model
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Isostatic model

Zn - graVity'tOpography admittance “

1600 kg/m®
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» Linear two-layer hydrostatic model

GM 3(n +1) r, Two-layer hydrostatic
__crust
R3 n+l r 6 7 8 9 10 1 12
mean
» Linear isostatic model
6" U
1 G]‘g 3(” +1) crust el _ Dc'omp - l] E
R 2n+l r, me(m@ 8 R g g % ] 1400 kg/m’ |
-
surface load perfect isostatic ks
equilibrium =
D ,mp- depth of < Non-linear
compensation two-layer isostatic

74 8 9 10 11 12

37



Bouguer anomaly

I D Gal

-250 -200 -150 -100 -50 O 50 100 150 200
Residual gravity anomaly

25 15" 7“95_ 08

74
6
5
4
3
2
1
0

|
= §

Height above geoid

; 20 .
‘\
;,,p/ ::/16—'
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Bouguer anomaly
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Isostatic anomaly
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Occator crater

Image credit: NASA, DLR
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Occator crater
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Occator crater

Image credit: NASA, DLR
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Occator isostatic anomaly (n > 2)
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Occator provides a linkage between internal structure and surface

observations
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Internal activity?

Contribution from topography

Strong lithosphere

-

Positive gravity-topography Negative gravity-topography correlatio
correlation
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Big basins

Kerwan Urvara and Yalode
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* Big basins are subcompensated
* Localized volatile enrichment

* Increased impact induced porosity
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Ahuna Mons

Residual gravity anomaly

 Ahuna Mons is proposed to be a region of cryovolcanic activity
* Having a strong isostatic (and Bouguer) anomales, the nature of

Ahuna Mons activity should be different from Occator
49



Summary

Weakly differentiated based on gravity/topography data

Temperature (not compositional) gradient governs rheology
* topography is isostatically compensated

Low core density implies strong hydration (2400 kg/m3)
* |ate accretion
OR

 early efficient heat transfer due to hydrothermal circulation
Early formation of subsurface ocean

No ice-dominated shell at present day

50



